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Abstract

An experiment which discussed the appearance of an internal wave attractor in a uniformly stratified, free-surface
fluid [Maas, L.R.M., Benielli, D., Sommeria, J., Lam, F.-P.A., 1997. Observation of an internal wave attractor in
a confined, stably stratified fluid. Nature 388(6642), 557–561] is revisited. This is done in order to give a more
detailed and more accurate description of the underlying focusing process. Evolution of the attractor can now be
quantified. For the tank with one sloping sidewall, and for the parameter regime (density stratification, forcing
frequency) studied, the inverse exponential growth rate determined at several locations in the fluid turns out to be
122 s always. Only the start and duration of the growth differed: away from the attractor region it appeared later and
of shorter duration. Here, these features are interpreted by employing a new theoretical basis that incorporates an
external forcing via a surface boundary condition (an infinitesimal barotropic seiche) and that describes the solution
in terms of propagating waves.
© 2007 The Japan Society of Fluid Mechanics and Elsevier B.V. All rights reserved.
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1. Introduction: internal waves in a confined fluid domain

Internal waves in a continuously stratified fluid, represented by the stability frequency N(z), have
peculiar characteristics. We will discuss the case with constant N, which supports internal waves of
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frequency � < N (Groen, 1948). For monochromatic internal waves, energy propagates obliquely through
the fluid with a fixed angle to the vertical �, set by the ratio �/N = cos �, see e.g. Turner (1973). The
behavior of propagating internal waves in such a stratified fluid is well suited for a description in terms
of rays. As depicted for example in Turner (1973, Fig. 2.10), reflection of waves at solid boundaries
of orientation other than horizontal or vertical gives rise to divergence or convergence of wave energy.
Maas and Lam (1995), from here on referred to as ML, demonstrate that in almost all confined fluid
domains focusing dominates over defocusing. The result is that wave energy focuses onto a limit cycle,
called wave attractor. Maas, Benielli, Sommeria, and Lam (1997) (in the following referred to as MBSL)
subsequently observed the existence of such an internal wave attractor around the predicted location. The
experiment qualitatively showed that the wave attractor developed on a time scale lasting several tens
of wave periods. Interestingly, the wave field appeared to grow initially as a standing wave and evolved
subsequently into a propagating wave as the final stationary state.

However, the aforementioned experimental study neither quantified the wave’s detailed evolution in
terms of growth rate and transition from standing to propagating, nor the spatial structure of its amplitude
and phase fields. It also lacked a quantitative description in terms of the applied forcing. This was due
to the peculiar nature of the theoretical internal wave field whose stream function field was given as a
standing, free wave that appeared to be uniquely prescribed once the pressure was set in two specific
boundary intervals only (ML). This seems to contrast on the one hand with the propagating character
of the observed asymptotic state of the wave field, and on the other hand with the intuitive notion that
one should be free to apply pressure at the boundary in whatsoever interval one pleases. The aim of
this paper is to bridge this gap between the theoretical description and the experimentally observed
nature of the internal wave attractor. This is done by adding forcing to the theory and by providing a
quantification of the experimental wave field. For this reason, the phenomenon of geometric focusing,
underlying the appearance of a wave attractor, will be recapitulated in the next section. In Section 3
the laboratory experiment will be revisited and the evolution of the wave field will be quantified. The
previously mentioned restriction on the prescription of the pressure at the boundary will be removed
in Section 4, when propagating solutions to the forced problem are discussed. The paper ends with a
summary and discussion. A review of wave attractors, which discusses also those that arise in confined,
homogeneous rotating fluids due to focusing of inertial waves, can be found in Maas (2005).

2. Earlier theoretical results

2.1. Geometric focusing

ML theoretically studied multiple reflections of internal wave rays (characteristics) in a confined two-
dimensional fluid. Different geometrical basin shapes were explored: rectangular, parabolic, elliptic and
trapezoidal. It was concluded that in almost all two-dimensional geometries internal waves are focused
onto a limiting set of characteristics: the wave attractor. Rieutord and Noui (1999) showed that this
included also the geophysically relevant spherical shell. Exceptional boundary shapes are formed by
rectangles and ellipses. These are nonfocusing as long as these are not tilted with respect to the direction
of gravity, because otherwise they would feature wave attractors too (Ogilvie, 2005; Kopecz, 2006).
The attractor (limit-cycle) can be classified by the number of surface reflections, called the period of
the attractor, which is related to the rotation number (Manders et al., 2003; Kopecz, 2006). The period
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of the attractor remains the same over a finite interval of the lumped parameter

� =
(

N2

�2 − 1

)1/2
D

L

defined by stratification (buoyancy frequency), N, internal wave frequency, �, and the basin’s aspect ratio,
D/L, where L and D are the half-width and depth of the basin, respectively (ML). Some basin shapes,
apart from those mentioned above, possess a residual symmetry. In such basins, for specific values of �
a so-called global resonance can occur. In this case, ray convergence is exactly balanced by divergence
of the reflecting wave rays and each ray is periodic by closing upon itself. In rectangular basins such a
global resonance is known as an internal seiche, in which no convergence or divergence of reflected wave
energy occurs at all.1 However, in continuously stratified fluids, confined to basins of arbitrary shape, this
global resonance should be considered as the exception rather than the rule, both in the laboratory as well
as in nature. Generically, the attractor dominates the internal wave appearance. This leads to a solution
with much fine scale structure which denies the alleged dominance of large-scale modes in confined fluid
systems (Baines, 1997; Thorpe, 2003).

In fact, as ML argued, not only do large-scale eigenmodes in general no longer dominate the response
of confined, continuously stratified fluids, but, remarkably, they even no longer exist. It is this property
that inhibits the classical approach in which one derives an equation for the evolution of the wave field’s
amplitude of a particular eigenmode.

An example of an internal wave attractor of rectangular shape is given in Fig. 1a. The topography is the
same as in MBSL: a trapezoid with one sloping side wall. The lumped parameter � defines the bottom’s
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Fig. 1. (a) Example of internal wave ray focusing (thin solid and dashed lines) and wave attractor (thick solid line) in a trapezoidal
geometry with the bottom at z=−�; �= 1.71. (b) Positions of special points at the surface define primary fundamental intervals,
see the discussion in the text. The attractor, having surface reflection at xe = �2 − � − 1, is depicted with dotted lines.

1 We here address only waves in a continuously stratified fluid; internal seiches, describing interfacial waves, are not
considered. For two-layer systems with a stratified deep layer and a homogeneous top layer, the strength of the pycnocline,
separating these two layers, determines the scattering (trapping, reflection and transmission) of waves (Gerkema, 2001).
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‘virtual’ depth over the flat part: z = −�, for −1�x�0, and upward slope, z = −�(1 − x), for 0 < x�1.
The attractor is reached by the characteristic webs that are constructed by launching two characteristics
from the upper left part of the surface towards the right (solid and dashed lines, respectively). In a
monochromatic wave, energy propagates downwards along such rays, see arrow in upper left part. In the
two-dimensional case, the rays along which the energy propagates are identical with the mathematical
characteristics of the governing differential equation; in three dimensions this holds only approximately
(Harlander and Maas, 2006). Following the adage that the waves maintain their angle with respect to
the direction of gravity, two half-webs are formed by these characteristic segments together with their
subsequent boundary reflections. The other half-webs are obtained by launching leftward. Each web
combines these half-webs and approaches the attractor. The energy ‘encircles’ the attractor in one definite,
clockwise sense (see other arrows).

For this simple geometry, the dependence of the attractor on the lumped parameter, �, and on a second
parameter, that determines the horizontal position of the foot of the slope, is fractal (MBSL) and contains
Arnol’d tongues (Manders et al., 2003). For the configuration shown in Fig. 1a, and for 1 < � < 2, the
attractor has a period 1 orbit with only one surface reflection located at xe = �2 − � − 1. For the example
of Fig. 1 (� = 1.71) this is at xe = 0.2141.

2.2. Standing wave solution

In order to relate the experimentally observed velocity field to the ‘ray-web’ that was found geomet-
rically in Fig. 1a, we first recall how to obtain the stream function from the web. This procedure was
referred to as the ‘dressing of the web’, see MBSL and Maas (2005).

The basin can be seen as a peculiar kind of billiards.As mentioned above, the ray-structure of the internal
waves imposed by geometry, internal wave frequency and stratification is such that upon reflection from
a boundary the ray keeps its angle fixed with respect to the vertical (gravity). By stretching the vertical
coordinate, this fixed angle can be made 45◦ for any monochromatic frequency. The stretching is then
present in the scaled depth �. Owing to incompressibility, the velocity field, (u, w), is described in
terms of the stream function �(x, z, t): u = −��/�z and w = ��/�x. We study monochromatic waves:
�(x, z, t) = Re[�(x, z) exp(−i�t)], where Re[..] signifies the real part. The spatial part of the stream
function is governed by the hyperbolic equation (ML): �2�/�x2 − �2�/�z2 = 0. This implies that the
stream function can generally be expressed as

� = f (x − z) − g(x + z) (1)

and similarly the (properly scaled) reduced pressure

p = f (x − z) + g(x + z). (2)

These solutions are given in terms of the partial pressures f (s) and g(s), where s is a characteristic
coordinate. The partial pressure is constant on the sloping characteristics. In order to make the solutions
unique, the partial pressure is prescribed along two specific parts of the surface of the basin only (ML).
For the unforced internal wave problem, the free surface is assumed to be quiescent and the fluid domain’s
boundary is a streamline: �=0. This boundary consists of segments at surface (z=0), wall (x =−1), and
bottom (z=−�h(x)), where h(x) represents the bottom shape, with |h|�1. Applying this condition along
the surface implies g(s) = f (s). But, in order for the stream function to vanish also at any other point of
the boundary, the value of f set at the incident characteristic needs to be conserved upon reflection and thus
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Fig. 2. Example of standing wave solution �(x, z) for a surface pressure pa(x) = 2f (x) that is prescribed within the two
fundamental intervals defined in Fig. 1b. From these, the whole pressure distribution along the surface, as indicated in the top
panel, can be inferred. Values for � are coded with the gray scale as shown in the legend on the right.

sets the value at the reflected characteristic. For real-valued functions f (s), this presents a standing wave
solution and in this case the surface pressure is pa(x) = 2f (x). However, because the partial pressure
is (instantaneously) preserved along characteristics, the same value of f is passed to neighboring surface
intervals when following internal wave rays. This means that we are not free to specify the pressure
along the whole boundary, but only within the so-called fundamental intervals. The largest of these are
the two aforementioned intervals which are therefore called primary fundamental intervals (see Fig. 1b).
Prescribing the pressure in fundamental intervals defines the pressure over the whole surface. An example
similar to that of ML and MBSL is given in Fig. 2.2 At the surface, the primary fundamental intervals
for this basin (and for 1 < � < 2) are x ∈ [−1, � − 2] and x ∈ [� − 1, 1]. The boundaries of these surface
intervals are obtained by connecting the corners of the basin with the surface along characteristics (see
Fig. 1b). Prescribing f (x) over these intervals, the remainder of f (x) can be inferred, see the top panel
of Fig. 2.

Since � is real, the standing wave solution of Fig. 2 is oscillating synchronously; it is blinking. Lacking
forcing, it is a free wave. Thus, to obtain a unique solution the pressure is prescribed at the surface within
the aforementioned fundamental intervals, but the prescription itself is still arbitrary. Physically it is
unsatisfactory that one is required to prescribe the pressure strictly on just two intervals, indeed without

2 The example depicted in Fig. 2 is shown on an (arbitrary) xz-grid. However, it should be stressed that this solution is not a
numerical approximation. For each element (xi , zj ) on the grid, the corresponding (analytical) solution �ij is exact.
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a link to the actual forcing. In Section 4 we will lift this restriction by considering a possibly realistic
forcing mechanism that allows the prescription of a specific pressure field also beyond these two intervals.
It leads to a propagating wave solution, similar to that observed. But first, in the next section, we will
have a closer look at the experimental results.

3. The internal wave attractor experiment revisited

3.1. Original analysis

MBSL observed the existence of an internal wave attractor in a laboratory experiment. The experiment
was carried out in a uniformly stratified tank, with a sloping sidewall and free surface, as in Fig. 1. The
platform on which the tank was placed was oscillating vertically with angular frequency 2�, in this way
slightly modulating the restoring force of gravity. The response in the fluid takes place by parametric
excitation. Each fluid particle, seen as an individual oscillator, is then subject to a buoyancy oscillation,
similar to a pendulum whose point of suspension is forced to oscillate vertically. The forcing is most
effective when the suspension is forced to go down when the pendulum is in either of its extreme upward
(leftward or rightward) positions, hence when the forcing has a frequency twice that of the pendulum.
In a similar fashion, modulation of gravity at frequency 2� excites subharmonic waves of frequency �
in the stratified fluid. Mathematically, the modulation of gravity appears as an extra sinusoidal temporal
restoring term of the harmonic oscillator, of period T =2�/�. This extended oscillator equation is known
as the Mathieu equation (Bender and Orszag, 1978). Benielli and Sommeria (1998) studied parametric
excitation both in a two-layer fluid as well as in a uniformly stratified fluid in a rectangular basin. It was
the latter configuration that was used in MBSL by inserting a sloping wall. We will therefore compare
results with those obtained in the rectangular tank.

Several frequencies close to that used in Fig. 1 have been explored in MBSL, and confirmed the
existence of the period-1, or (1, 1) internal wave attractor in the interval 1���2. Here, we refer to an
(m, n)-attractor as one having m reflections from the surface and n from the vertical side wall. In the
experiment, at the edges of the (1, 1)-attractor frequency interval, somewhat higher forcing amplitudes
(15 cm) were needed to excite the attractor than the threshold amplitude of 8 cm for central frequencies.
The attractor was visualized by monitoring the position of eight layers of fluorescent dye that were
stimulated by laser light.

The most prominent result of MBSL was that in the experiment the predicted presence, shape and
location of a (1, 1) internal wave attractor are reproduced, see Fig. 3. Approximately 5 min (∼ 70 wave
periods) after the oscillation of the tank was started, localized fluid motion became visible. The attractor
first showed up as a smooth, standing-wave pattern (Fig. 3; top), in which the region around the attractor
oscillated synchronously. Later, the elevations of the dye layers showed a distinct propagating behavior
around the attractor. This can be seen from the inward propagation of white ‘nodal’(phase) lines, indicated
by arrows in the bottom panels of Fig. 3. Inward (outward) propagation of similar nodal lines can be
observed along the other long (short) branches of the attracting rectangle. Since the dispersion relation
of internal waves predicts energy to propagate perpendicularly to the phase propagation direction (such
that phase and group speed have opposite vertical components), it was inferred that energy propagates
clockwise around the attractor, consistent with the direction into which the slope focuses reflecting
characteristics (Fig. 1a).
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Fig. 3. Wave attractor observed in laboratory experiment (black-and-white version of Fig. 4 of MBSL). The attractor is visualized
by highlighting the absolute difference (compared to some reference image) of the intensity of the video image. In this way, large
displacements of originally horizontally oriented dye bands are visible. Here � = 1.71 and forcing amplitude is 10 cm. Pictures
show growth phase (top), taken 9 min after start of experiment and permanent stage (bottom), after 10 min, showing images at
three instances in a wave cycle at t/T = n/12, labeled by integer n = 1, 2, 3.

The two observed phases were called the growth and permanent phase respectively (MBSL). The
standing behavior in the growth phase was explained qualitatively in terms of waves that are generated
locally in the bulk of the fluid and that travel with equal magnitude in opposite directions on each
characteristic. Waves excited on different parts of a characteristic that propagate towards each other thus
set up a standing wave. Later, in the permanent phase, however, half of these waves pass the repellor (ML)
and change the sense in which they traverse the basin. Thus, regardless of initial propagation direction,
these waves then all wind around the wave attractor in the same, clockwise sense, giving the attractor’s
near-field its ultimate propagating character.

In the next subsection digitized images from the video recording of the experiment will be analyzed in a
more quantitative way. Especially, the growth rate of the amplitudes and the standing versus propagating
nature of elevations will be examined.

3.2. Revisiting the wave-attractor experiment

In one of the experiments in MBSL, discussed below (see Table 1and Fig. 3), the forcing amplitude
of the table oscillation was set to 10 cm and the forcing frequency 2� = 2.88 s−1. This led to an internal
wave period Tw = 2�/� = 4.37 s.
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Table 1
Parameters and scales used in MBSL (Maas et al., 1997)

Length 2L 261 mm
Depth D 261 mm
Width W 96 mm
Amplitude Z 80–150 mm
Stratification N 1.89 s−1

Experiment 4
Amplitude Z 100 mm
Time scale T 4.36 s
Period Tw 4.37 s
Frequency � = 2�

Tw
1.438 s−1

Scaled depth � = D
L

√
N2

�2 − 1 1.71 –

The video recording of this experiment was digitized, and translated to 25 images for each second, with
a resolution of 256×224 pixels each. The experiment lasted over 20 min, taking more than 31,000 images
in total. We analyze the evolution of the intensity of all pixels for all images during the experiment. Details
of the image and time series analysis can be found in the Appendix. We will express vertical excursions
in terms of the scalar pixel intensity that changes from 80 (no dye) to 240 (within the dye layers). While
it is not easy to assign a vertical displacement to any particular change in pixel intensity, we can get some
indication from the following observation. Each of the eight pairs of dyed and undyed layers is about
3.2 cm thick. So, a change from minimum to maximum intensity occurs over vertical displacements of
about 1.6 cm or more. There are indications that such displacements can reach up to 3.5 cm. This can
be inferred from the passage of neighboring dye layers. This also implies that it is difficult to assign
an unbiased phase to any change in pixel intensity. An increase of pixel intensity can either mean the
downward displacement of the upper or upward displacement of the lower neighboring dye layer. In the
following this ambiguity has usually been eliminated by computing phase modulo 180◦, which, however,
does not allow us to distinguish upward from downward motion. In one case, for a single time frame,
also this final ambiguity was eliminated and the phase was computed modulo 360◦.

Subsequently, each time series of pixel intensity is harmonically analyzed. In particular the amplitude
and phase of the wave of frequency � is determined at each pixel. Fig. 4 displays the amplitude and phase
field (in this case modulo 360◦) at t/T = 160, which is the moment that the attractor is most sharply
defined. The harmonic amplitude field has a similar localization of wave energy as that revealed by the
snapshots in the bottom panel of Fig. 3. The harmonic phase aligns itself along the four branches of the
attractor, with inward (outward) phase propagation along the long (short) branches labeled 1 and 3 (2 and
4) in Fig. 5b. This confirms the earlier observed propagation of nodal lines. Also note in particular the
out-of-phase character of the two pairs of opposite attractor branches, which, again, is consistent with
clockwise energy propagation.

3.3. Composite harmonic amplitude and phase across the attractor

In order to see the slow-time evolution of the amplitude and phase fields, the previous analysis is
repeated every wave period (see Appendix). A composite picture, showing the development of the wave
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Fig. 4. Example of harmonic amplitude (a) and phase (b, in degrees, see legend) of pixel intensity taken from same period as
images in bottom panel of Fig. 3: t/T = 160. Here phase is corrected by checking for sudden jumps in vertical direction. The
relation between pixel intensity and vertical displacement is discussed in the text.
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Fig. 5. Overview of location of the attractor, based on a sample image (a, left) and selected lines used for composite ‘waterfall’
plot (b, right). The numbering of the four attractor branches refers to the order in which energy propagates along the attractor,
upon the focusing reflection from the slope. In subsequent figures (6–9), horizontal pixel index ix of the longest lines (starting
at ix = 23 in the upper and lower left corner of the tank) will be used as along-ensemble co-ordinate (from left to right).

attractor, is obtained by filling the artificial gaps (see e.g. Fig. 5a) that are caused by the finite width of the
dye bands used to visualize vertical displacements. This filling is done by ‘averaging’ over an ensemble
of characteristics that cross the attractor transversely, see Fig. 5b. The ensembles consist of 27 (downward
to the right) or 19 (upward to the right) diagonal, neighboring characteristics. For the amplitude field,
averaging consists in taking the maximum of the ensemble; for the phase, taking its median value (modulo
180◦), as in Fig. A3b. This is possible because the oscillation is in phase along each individual branch
of the internal wave attractor (Fig. 4). These average values are assigned to the horizontal pixel index
coordinate, ix , corresponding to the ensemble’s central characteristic.

The amplitudes observed along the long branches 1 and 3 of the attractor (Fig. 6) are higher than those
along the short branches 2 and 4 (Fig. 7). The weakest amplitudes are found at branch 4 (Fig. 5b). It
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Fig. 6. Composite waterfall plot of maximum of harmonic amplitude (top) and median of harmonic phase (bottom) along 27
characteristics crossing the long branches, 1 and 3, of the attractor, as depicted in Fig. 5. Phase, modulo 180◦, is similarly defined
as in the Appendix. For waterfall plots, time is represented on the vertical axis (increasing from the top downwards) and the
horizontal pixel index on the horizontal axis. The theoretically predicted attractor crossings are depicted with vertical white lines
at index jx ≡ ix − 22 = 73 and 124, corresponding to ix = 95 and 146, respectively.

is not clear why this happens. The characteristics are symmetric with respect to the vertical, and hence
the projection of the true, oblique motion on the vertical direction is the same for both characteristic
directions. Also, since both the bottom, left side wall and surface are all nonfocusing it is not clear where
this change in amplitude comes from. Clearly, the different stages can be recognized again; the first
discernable motion around the attractor location appears around t/T = 60. Until t/T = 100 the phase
is uniform near the attractor, and this corresponds with the standing wave phase. From t/T = 100 to
170 the attractor grows and starts to develop a propagating character, until finally (t/T > 170) the high
amplitude motion smears out and the quasi-stationary permanent phase appears.

The clear transition from the initial standing to final propagating wave behavior, Fig. 3, is in this analysis
seen to take place gradually. Figs. 6 and 7 (bottom panels) show that in the initial stages of the experiment
the phase (modulo 180◦) is quite uniform around the attractor (characterized by the single green color).
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Fig. 7. As Fig. 6 but for 19 characteristics crossing the short branches 2 and 4 of the attractor (see Fig. 5). The original estimated
attractor crossings are depicted with vertical white lines at jx = 27 and 167 (ix = 49 and 189).

Subsequently, the high-amplitude bands around the attractor beams amplify and broaden until their width
stays constant for t/T > 170. During the same transition period the phase develops a persistent phase
gradient across the two branches of the attractor. Defining jx ≡ ix − 22, in Fig. 8 this can be seen in
pixel range 55 < jx < 83 and 115 < jx < 135. These gradients are consistent with the propagating phase
observed in terms of the motion of a nodal line in MBSL. This is indicative of the previously inferred
clockwise energy propagation around the attractor. Surprisingly, the net observed phase variation (nearly
60◦, see Fig. 8) amounts to just part of the expected cross-beam variation of 180◦, valid for a stationary
internal wave beam affected by linear dispersion and viscous damping (Lighthill, 1978). This difference
is presumably limited by the range over which the amplitude stands out over the noisy background.

3.4. Second harmonic

Fig. 9 gives amplitude (top) and phase (bottom) of the second harmonic in terms of its ensemble
maximum and median values, respectively. It is clear that the amplitude starts to grow around the attractor
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Fig. 8. Mean phase and amplitude distributions along the beam perpendicular to the long branches, 1 and 3, of the attractor for
the last 50 sequences (t/T = 240–290) of Fig. 6.

a little later (around t/T = 135; 9.8 min) then for the fundamental harmonic �. After having reached
a maximum value around t/T = 155 (11.3 min), the amplitudes decrease again. Amplitudes for 2� are
always lower than for �; phases show a larger gradient in the across-attractor direction.

This second harmonic can occur through a number of causes which we list here. Internal waves with
frequency 2� might first be directly forced, as a secondary instability of the Mathieu equation (Bender
and Orszag, 1978). Second, they may be generated due to nonlinear advection of overlapping internal
wave beams (Peacock and Tabaei, 2005; Gostiaux et al., 2006). However, in this experiment they are not
expected to propagate away as free waves because they are above the buoyancy frequency (2� > N).
Hence, when these second harmonics do show up, this could imply that they are forced locally. Their
trapping, along the attractor that corresponds to frequency �, suggests this to be a continuous process,
occurring all along the attractor. Third, as discussed in the Appendix, double-frequency motion might
also be an artifact. This is merely a problem of the tracer used in the experiment. The double-frequency
amplitude would show up when the single frequency motion is saturated and the vertical component of
fluid elevations equals or exceeds the width of the dye bands. However, the expected associated decrease in
the single-frequency amplitude is not clearly visible. Finally, the presence of second (and other) harmonics
may reflect the nonlinear nature of the cross-beam structure that propagates in the cross-beam direction
during each wave period.

3.5. Exponential growth

In Fig. 10, the inverse exponential growth rate, �g, is estimated for some vertical cross-sections of
Figs. 6 and 7. This is obtained by modeling the evolution of the pixel intensity during a definite time
interval as e(t−t0)/�g , for some starting time t0. For all (seven) cross-sections examined, this inverse growth
rate is estimated as �g = 122 ± 5 s. Outside the attractor the pixel intensity starts to grow later (larger t0),
which indicates remote forcing, and the intensity saturates at a lower level (owing to a shorter growth
duration), but it increases at exactly the same rate as within the attractor neighborhood. These properties
are quite unlike the growth of a classical eigenmode, for which growth duration, the moment at which
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Fig. 9. As Figs. 6 and 7, but for second harmonic frequency 2�. Amplitude (top) and phase (bottom) are given for beams crossing
the long branches 1 and 3 of the attractor (left), and crossing the short branches 2 and 4 of the attractor (right).

growth commences, and the duration of the growth are independent of the location at which these are
observed.

The net growth rate of 1/122 s−1 = 0.0082 s−1 is significantly smaller than that of waves excited in
the same configuration without sloping wall, which, for the largest scale resonant mode, amounted to
0.069 s−1 (Benielli and Sommeria, 1998). The net growth rate is determined by forcing rate s = �3Z/g,
proportional to vertical oscillation amplitude Z, minus decay rate Q. This decay rate represents interior
damping due to shearing motion, Qinter, plus dissipation due to boundary friction, embodied in Qbound.
In the rectangular domain, boundary friction dominates interior damping by a factor hundred, and the
computed (observed) decay rate of the largest scale mode Q=1.4(2.6)×10−2 s−1 (Benielli and Sommeria,
1998). The computed interior decay rate is �k2/2, where k is wave number and � molecular viscosity and
the computed boundary decay rate is proportional to (��/2)1/2/	, where 	 is a length scale representative
of the basin shape. Both increase with increasing viscosity. The small net growth rate in our container
with sloping side wall is consistent with the idea that the attractor is very dissipative (Ogilvie, 2005).
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Fig. 10. Analysis of exponential growth for signals shown in Figs. 6 and 7, left and right panels, respectively. Numbers indicate
four (top panel) and three (bottom) indices jx (including the vertical lines in Figs. 6 and 7) that are representative of positions
that are either on or away from an attractor branch. For all cases, the exponential factor �g, determined by the slope of the dashed
line, is about 122 s, with pixel intensity growing as: exp((t − t0)/�g). The time intervals over which growth occurs and over
which the growth rate is determined is demarcated by plus (+) symbols.

The small wave numbers associated with the wave focusing in the sloping-wall experiment suggest a
substantial increase of the internal dissipation, overshadowing the reduction of boundary dissipation
due to the localized nature of fluid motions accompanying the attractor. Ogilvie (2005) finds that in the
presence of a wave attractor the total amount of dissipation is insensitive to the actual magnitude and
form of the small-scale damping process of the waves (viscosity) and is thus set by the influx of energy.

The stronger damping also explains the smaller maximum amplitudes reached in the basin with sloping
side (approximately 3.5 cm), compared to those at which the standing internal wave saturates in the
rectangular tank, which can reach amplitudes in excess of 10 cm (Benielli and Sommeria, 1998). Moreover,
in the rectangular tank the sloshing mode was frequently observed to become statically or parametrically
unstable, leading to renewed growth over a very long time scale. In contrast, the wave attractor’s final
state seems fairly stable, although we anticipate that the mixing that is continuously present will lead to
a long-term modification, which might bring the forcing frequency out of the period-1 attractor regime.
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4. Traveling wave solution for sloshing surface forcing

4.1. Goal

In the previous section an extended, but still rather quantitative description is presented for the internal
wave attractor experiment, first addressed in MBSL. It became clear that the asymptotic state reached in
the experiment is that of a propagating wave. It thus seems natural to search for a theoretical asymptotic
description of the stream function field that captures this propagating feature which will be presented here.
Let us first list discrepancies between the present theoretical solutions (e.g. Fig. 2) and the experimental
results which obstruct a direct, one-to-one, comparison:

(i) The proposed solution is only allowed to have a ‘standing-wave appearance’; the stream function field
in Fig. 2 is supposed to be blinking, i.e. has a binary (0◦ or 180◦) phase.

(ii) It is difficult to associate the surface boundary condition for f (x) that is needed to provide a unique
solution and that is related to the surface pressure (ML) to a realistic forcing, see for instance the upper
frame of Fig. 2.

(iii) It is hard to directly relate the stream function field �(x, z) (or �(x, z, t) for that matter) to the observed
(vertical) fluid displacement in the experiment presented in the previous section.

All three elements will be improved below. It could be objected that in the presence of wave attractors
one may not expect the solution to be of a standing nature. Wunsch (1969) invoked this argument in
inferring the character of internal waves in a subcritical wedge (a wedge whose slope is less than that
of the characteristics). He argued that standing waves are not likely to occur, for internal waves will not
reflect back from the corner; all energy is transported in just one direction, i.e. into the wedge, which
therefore acts as a point-attractor. There, these waves will amplify till the point of wave breaking and
will locally mix fluid. Similar reasoning can be followed for most closed basins with supercritical slopes
giving rise to wave attractors: all energy is supposedly transported just towards the attractor, without
being reflected back from it. ML therefore suggested to employ propagating wave solutions. This will be
performed in the following.

4.2. Traveling wave solution by allowing for complex f (x), g(x): externally forced flow

Can we construct propagating solutions? Within the framework of free solutions, this question can be
answered affirmatively by simply choosing the partial pressure as a complex quantity. Taken literally, this
solution is physically not very meaningful, as it implies that waves are generated at the wave attractor,
propagate away from it, against the focusing sense (anticlockwise in Fig. 1a), then pass through the bulk
of the fluid and finally converge onto the attractor again, now approaching it in the focusing (clockwise)
sense. But, can we use our knowledge on the existence of fundamental intervals and force waves such that
they only propagate away from these intervals? This does indeed seem to be possible by supposing that
some externally applied surface pressure field, pa(x), is given there and by subsequently decomposing
this into its Fourier components. Then, in the fundamental intervals we decompose each such Fourier
component further into ‘rightward’ and ‘leftward’ propagating (complex) components, using the relation

cos(ax) = 1
2 e+iax + 1

2 e−iax ≡ fR + fL, (3)
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Fig. 11. Leftward (dotted) and rightward (solid) characteristics, as originating from both fundamental intervals computed for
� = 1.71. The fundamental intervals at the surface are −1�x � − 0.29 (a, left) and 0.71�x �1 (b, right), see Fig. 1b. All
characteristics emanating from the fundamental interval downward and to the right (along solid arrows), appear as a black band
after one focusing reflection. The lighter, dashed band of characteristics are build up of dotted lines, traveling downward and
leftward (along dashed arrows) from the fundamental intervals.

for arbitrary a, and similarly for sin(ax). The designations leftward and rightward for fL and fR refer to
the direction into which horizontal components of phase and energy propagate when multiplying by e−it

(in nondimensional form). It implies that, in contrast to the standing wave case, each web is no longer
specified by a single invariant f. Instead, quantities fL and fR are now invariant on two semi-infinite webs
only (obtained by following characteristics leftward or rightward, respectively, from any starting point in
the fundamental interval) and should be interpreted as the (complex) f and −g in the original derivation,
(1). As a consequence, within the fundamental intervals, the stream function (� = f − g) and its along
boundary gradient (w = ��/�x) no longer vanish. This betrays that at that part of the boundary there is
a periodic motion normal to the boundary which is in phase with the applied pressure (pa = f + g) and
hence represents a transfer of energy across the boundary.

In order to compute the stream function in any interior point from the given data at the boundary, some
bookkeeping is needed for tracing back any characteristic to the fundamental interval where it originated.
Also the direction from which the fundamental interval is reached has to be traced, as this clarifies to
which of the two semi-infinite webs it belongs. This can easily be seen with the help of Fig. 11, where the
original leftward (rightward) characteristics are represented by dotted (solid) lines. The only exception
occurs when a characteristic is exactly part of the attractor, which remains undefined; both for the stream
function, as well as for f (x) and g(x) at the surface. After this bookkeeping, for any point (x, z), the
complex-valued stream function �(x, z) can be assigned by (1). The stream function at time t is then
found from �(x, z, t) = Re[�(x, z) e−i�t ]. An example following this approach is given in Fig. 12 .
At the surface, the same boundary condition, pa(x), is used as in Fig. 2. Here the stream function is
given for six time steps; t/Tw = n/12, for n = 1, . . . , 6, showing half an internal wave period. Outside
the (primary) fundamental intervals the stream function remains zero at the surface as well as on all
other rigid boundaries (uniformly dark gray color); waves only reflect here. In the fundamental intervals,
however, the stream function is no longer always vanishing. This illustrates that the vertical velocity, �x ,
is nonvanishing in these intervals, which is in phase with the pressure perturbations so that work is done
upon the fluid in these isolated intervals, similar to the action of two pistons.
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Fig. 12. Example of stream function fields at times t/Tw =n/12, for n=1, . . . , 6, illustrating traveling wave solution for �=1.71.
The same surface boundary pressure pa(x) = f (x) + g(x) is used as in Fig. 2, but is now understood as being composed of
complex partial pressures g(x)= f ∗(x), where the asterisk denotes the complex conjugate. Also the same gray scale legend can
be applied to these images (now for � instead of �).

In this ‘movie’, we can actually see internal wave energy transferring from the fundamental intervals
towards the attractor. The direction of this transfer can be verified in Fig. 12: at the surface, phase moves
out of the fluid, which means that energy enters the fluid.

4.3. Boundary forcing not restricted to two fundamental intervals

In the previous subsection, the forcing of the traveling wave solution took place only in the (primary)
fundamental intervals. This could be envisaged by two (flexible) pistons at the surface, which are exactly
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Fig. 13. Example of iteratively defined traveling wave solution �(x, z, t) for ‘surface sloshing’ boundary condition;
pa(x) = sin(x�/2). Times shown are for n = 0, . . . , 5, with t/Tw = n/12. Stream function � is color-coded, as shown in
the legend. Arrows represent the velocities as derived from numerically computed stream function gradients based on the stream
function field.

as wide as the fundamental intervals, and which are fully isolated from the remaining surface of the
fluid. In natural systems, the forcing is of course not restricted to such intervals. We therefore would
like to prescribe, e.g. a surface pressure over the entire surface domain; x ∈ [−1, 1]. Think of this as
representing an infinitesimal-amplitude barotropic seiche, again generated by the modulation of gravity;
as in nonresonant Faraday excitation (Faraday, 1831; Drazin and Reid, 1981).

As explained in ML, when f is prescribed over the complete surface this might raise inconsistencies.
For the partial pressure f that is passed along the characteristics would generally be defined multiply along
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Fig. 14. Example of iteratively defined traveling wave solution �(x, z, t) for ‘surface sloshing’ boundary condition;
pa(x)=sin(x�/2). Here the associated displacement is shown by artificial ‘dye’bands for times n=0, . . . , 5, with t/Tw =n/12.

any characteristic. However, since � is a solution to a linear problem this leaves open the possibility to
superpose partial solutions �n:

� =
N∑

n=1

(�n + �−n). (4)
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Fig. 15. Comparison of observed (left) and computed dye displacement field (right). The computed image on the right is for
time: n = 15, but now with t/Tw = n/24 (the opposite phase of the virtual image between n = 1 and 2 in Fig. 14).

Here, each individual fundamental interval is regarded as supplying one additional component �n to
the total solution. The two primary fundamental intervals supply �1 and �−1, their next-neighboring
fundamental intervals, found by following the boundaries of the primary intervals right and left wards,
supply �2 and �−2, and so on. If we now want to impose the surface boundary condition over the complete
surface, one more physical assumption needs to be made: we assume that at each point of the surface,
work is done only by the prescribed pressure, not by the pressure variations induced at that location by
forcing elsewhere. Following the characteristics, the (complex) partial pressure that is thus set on each
characteristic will simply be passed on upon successive boundary (surface) reflections. In other words:
for each contribution �n, the external boundary condition is applied once, and reflects from there on.
Physically, this means that at the surface the boundary condition is imposed, while the surface’s reflective
nature is unaffected! Although this may apply only for small perturbations at the boundary, in general this
is not an uncommon situation. This also happens when forcing a string that is fixed at one end resonantly,
by periodically shaking the other end (with infinitesimal amplitude). At the latter, forced end of the string,
energy is both entering the system as well as reflecting there, enabling the build up of a standing wave.

In fact, (4) can also be viewed as directly supplying the stream function at any particular point, (x, z),
in the interior of the domain. In this interpretation, the �n supplies the partial pressure, set in the nth
fundamental interval. This is there obtained from the applied pressure, regarded to be specified over the
whole surface pa =f +g. Starting from any point, (x, z), we can define the components of (4) as follows:
�1 is defined by the forcing on the first two surface reflections of the two upward characteristics that cross
at (x, z); �−1 by the downward pair of characteristics crossing at (x, z) that reach the surface upon bottom
and side-wall reflections. �±n for n = 2, . . . , N are defined similarly, by following these characteristics
further, until their next n surface reflections. The method converges (and the solution is bounded). When
n is large, �±n does not contribute to � anymore, for, when the attractor is nearly reached, values of
the prescribed surface pressure f + g (assumed to be smooth) are nearly equal. So their difference, as
defined by (1), vanishes. Only at the locations of the characteristics that describe the single periodic orbit
associated with the attractor the solution and the boundary condition are undefined.

With the alternative algorithm, described above, also the standing wave solution of Fig. 2 can be obtained
(for which g(x) = f (x)) if f (x) is real and nonvanishing only in the primary intervals. Previously, by
employing the invariance of f (x) per web we constructed the partial pressure f (x) over the whole surface
(excluding the reflection point of the attractor) by iteration from the two fundamental intervals. The stream
function was then read off in any point as the difference of the two invariants that were defined by their
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values at the first two upward surface intersections. Here, instead, from each field point one iterates
backwards until one arrives in a fundamental interval in order to determine the partial pressure.

This approach more naturally allows the partial pressure to be prescribed differently in different fun-
damental intervals, allowing for the description of propagating wave solutions, see Swart et al. (2007).
In this process, not only each of the four directions from which waves can reach the point of interest
should be considered, but also one should determine at each surface reflection whether the leftward or
rightward part fL or fR should be chosen. Doing so, we get a complete traveling wave solution for � for
an arbitrarily defined surface forcing. An example of this is given in Fig. 13 in which the applied surface
pressure is chosen as: pa = sin(x�/2); this is the lowest mode of a (surface) seiche (for a rectangular
basin). We will refer to this type of forcing as ‘surface sloshing’. This could be thought of as the first
Fourier component of a surface sloshing mode for this trapezoidal basin. The only additional (physical)
restriction at the surface, z = 0, is that �pa/�x(±1) = 0, because the corners are stagnation points where
u(±1) = 0. This condition also prevents the appearance of internal shear layers (see Fig. 20a of ML for
an example of this effect).

4.4. Approximate fields for velocity and displacement

In order to make a comparison with the displacement of the horizontal dye bands in the laboratory
experiment (Section 3) we will now compute the displacement field associated with the traveling wave
solution of Fig. 13. This is done in a pragmatic way. From the stream function field �, the fields for
the velocity components u and w are derived, see vector fields in Fig. 13. In this example, the gradient
of � is computed numerically. After that, the displacement is approximated by a simple linear Taylor
approximation: x = x0 + u(x0)�t and z = z0 + w(z0)�t , for an arbitrary time increment �t , and with
original position (x0, z0). Fig. 14 gives an example, where the position of eight originally horizontal dye
bands in the fluid are visualized (suppressing locations outside the domain in this linear approximation).
This figure reveals that the waves get focused near the attractor.

Fig. 15 shows there is good overall agreement between the laboratory experiment and the ‘simulation’.
The location of the attractor is clearly visualized and its width is, geometrically speaking, to first order
defined by the first surface reflection of the fundamental interval. This is visualized by the largest black
band in Fig. 11. Also some fine scale structure is visible in both cases, with a scale defined by the next
surface reflection of the fundamental interval. But in the experiment finer scales are suppressed, probably
by viscosity.

Some other choices for the boundary condition were explored, especially the case pa =cos(�x), where,
contrary to the previous example, the outer regions are in-phase at the surface. However, the first example
has more resemblance with the laboratory experiment.

5. Summary and discussion

5.1. Brief summary of results

In Section 3 the laboratory experiment, described in MBSL, was reanalyzed. More details in space
and time about the amplitude and phase of the internal oscillations were revealed and quantified. Several
limitations of the experimental setup were explored and mostly understood. The appearance of the internal
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wave attractor and its temporal and spatial development were clearly visualized this way. The overall
inverse exponential growth rate was found to be 122 s, starting later outside the attractor neighborhood.

In Section 4 the theoretical description of a monochromatic internal wave field of a stratified, confined,
essentially two-dimensional free-surface fluid (ML,MBSL) was extended to include traveling wave so-
lutions. By an iterative approach, also more generic (and more realistic) boundary conditions can be
applied. Finally, visualization of displacement fields, as obtained by Taylor approximations of velocities
(obtained from numerical estimates of the gradients of the analytically predicted stream function field),
made a better comparison possible to the actual experimental displacements. The closer resemblance
between the two was based on assuming that the theoretical field was forced by a small amplitude surface
seiche.

5.2. Discussion

The reanalysis of the earlier observations reveals a number of new interesting facets regarding the
formation of an internal wave attractor. Fig. 10 showed that the wave field exhibits phenomena known
from related studies on parametrically excited waves (Miles and Henderson, 1990; Benielli and Sommeria,
1998; Hill, 2002): (1) slow growth above the noise level, (2) a rapid exponential growth phase, (3) a slight
overshoot, and (4) saturation into a quasi-steady asymptotic state. These features are usually properties
of the time-dependent amplitude field of a spatially fixed, standing wave structure. As a consequence,
in such circumstances each field point exhibits these phenomena simultaneously (no spatial delay). The
spatial structure of the field acts as a local weighting factor and determines the local saturation level.
The amplitude equation is often a nonlinear Landau type of equation (Benielli and Sommeria, 1998),
whose steady state is obtained when nonlinearity together with dissipative and dispersive terms balance
the parametric excitation. It can be used to infer the strength of interior and boundary damping processes.

However, the novel property encountered in the wave attractor is that there is no spatial eigenmode
structure and that, indeed, in the final stage the wave is not standing at all. Compared with the growing
standing mode this distinctive property is visible in that different spatial positions exhibit (1) equal growth
rates, (2) different delays, (3) different durations of growth periods. This is in consonance with expectations
based on linear partial differential equations proposed to describe internal wave beams (Dauxois and
Young, 1999; Tabaei and Akylas, 2003; Voisin, 2003). These descriptions typically incorporate viscous
and diffusive processes, balancing dispersive effects, that may explain the observed delayed growth and
reduced growth duration outside the direct vicinity of the wave attractor.3 Such a PDE model is by
itself not able to explain the appearance of a stationary state. This also requires a persistent internal wave
source, e.g. an oscillating cylinder, as in experiments by Makarov et al. (1990). In the wave attractor
case, geometric focusing acts as such a ‘source’ term. Its amplification balances the viscous spreading
that occurs along most of the attractor of the internal wave field. This was cleverly build into models by
Rieutord et al. (2002) and Ogilvie (2005). In the present experiment, however, it seems that viscosity is
not the relevant damping process, but that damping is instead dominated by internal wave scattering upon
reflection from the free surface. This suggestion is motivated by observing that the width and amplitude

3 Note that nonlinearity has not been discarded from these models, but the slow-time amplitude equation turns out to be
linear, even though the nonlinear generation of the second harmonic and mean fields are necessary intermediaries. It is significant
that the internal wave observations presented here also exhibit second harmonic (see Fig. 9) and mean (not shown) fields that
are present around the location where the attractor of the fundamental harmonic is situated.



F.-P.A. Lam, L.R.M. Maas / Fluid Dynamics Research 40 (2008) 95–122 117

of the wave beam are nearly constant around the attractor, except suddenly on the final, fourth branch,
where the amplitude has dropped significantly and where wave growth appears later in time. Compare
e.g. the delayed exponential growth on this branch, evidenced in Fig. 10b by the curve labeled 167, to
that on the other three branches (labels 124, 27 and 73, respectively). Also, the second harmonic is absent
on this fourth branch, see upper right panel of Fig. 9.

A referee suggested that the atypical, spatially varying growth may have been excited by many eigen-
modes. However, we want to stress that eigenmodes (and eigenfrequencies) do not really exist in these
spatially hyperbolic systems (ML). In other words, the eigenspectrum can (depending on taste) be said
to be either empty or continuous. Fact is that whatever frequency in the internal wave frequency range is
impressed on the system, the fluid responds at that frequency in the manner observed; that is, it will grow
initially as a standing mode, and upon saturation slowly transform into a propagating wave. Its spatial
structure cannot be related to that of an eigenmode (as this does not exist) but always shows the localiza-
tion associated with the approach of the wave attractor. We unfortunately lack a model that captures this
transition, and are thus unable to clearly understand the transition time scale (of about 170 T). Further
work is needed here.

Not all problems with the experimental setup could be overcome. Light conditions and instabilities
of camera position or digitizing device appeared to be not optimal. The tracer that was used, namely
fluorescent dye, inhibits a direct translation from color intensity to actual (vertical) displacement of fluid
particles. However, the analysis as presented in Section 3 showed that harmonic analysis provided many
valuable details of the experiment, even though neither the passage of nodal lines, nor the transition from
standing to traveling wave was as clearly visible as in the snapshots in MBSL, see also bottom panels
of Fig. 3. It seems that nonlinear processes (a nonsinusoidal response), or nonlinear properties of the
tracer that was used, may have enhanced these features in the original images over those displayed by
the harmonic field. These processes are probably also the reason why the amplitude and phase fields of
the second harmonic were most significant in the vicinity of the wave attractor whose location was set
by the primary harmonic.

Nevertheless, the above results are an important step forward for a better understanding of the internal
wave field in a confined, stratified and free-surface fluid and may direct the set-up of future experiments.
Moreover, the theoretical extensions provide better possibilities for comparison with observations, both
in the laboratory, as well as in (pit) lakes and in the ocean (Fricker and Nepf, 2000; Thorpe, 2003; Boehrer
and Stevens, 2005).
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Appendix A. Image and time series analysis

In this appendix we give some details on the image and time series analysis. Further details can be
found in Lam (2007).
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A.1. Time series of gray scale intensity

Color information of the images contained in the three RGB-fields (red-green-blue) is translated to
standard gray scale images, with intensity on a scale from 0 to 255. With the resulting gray scale intensities,
time series can be retrieved for any position in the image. Some examples of two nearby pixels are shown
in Fig. A1.

The analysis shows that pixel intensity grows in time. But, despite closeness of pixels, this growth
starts at different moments and lasts for different durations. However, the growth rate appears to be quite
uniform. Horizontal and vertical positions are labeled in pixel units, ix and iz, respectively. Time is scaled
with T = 4.36 s, which is an integer number (109) of sampling periods (0.04 s) closest to the internal
wave period of Tw = 4.37 s. Here time series are depicted for two positions in the image-pixel-frame:
(ix, iz) = (060, 115) and (060, 120). Fig. A1c,d shows that the second (lower) pixel resides close to the
white band (near intensity 240; the lightest color, before translating to gray scale, is originally yellow) and
the first pixel lies close to the dye-less black band (near intensity 80). The two disruptions in light intensity
in intervals 15 < t/T < 30 and 65 < t/T < 75 are due to external perturbations and are ignored here. Gray
scale amplitude grows in time, but, despite the closeness of the two pixels, with different starting times
and possibly different growth rates. Quantification of the growth rate is given in Section 3.5. Eventually,
light intensity oversaturates or undersaturates. This inhibits a correct estimate of the amplitude of the pixel
intensity variation, see the enlargement in Fig. A1e, which shows this peak truncation. Another problem
is that when displacements are large, dye from a second layer above or below may cause a renewed
increase in pixel intensity. Superficially this suggests that the wave field develops a second harmonic, but
this really bears testimony to the large wave amplitude, see Fig. A1f.

In spite of this, Fig. A1 shows that one can still obtain the location of the attractor as well as the
exponential growth of the amplitude of the oscillation. In our analysis we use pixel intensity to represent
the vertical component of the oscillation of fluid parcels.

A.2. Harmonic analysis

In order to obtain the characteristics of the periodic motion of the fluid, we perform a harmonic analysis
to the time series of the gray scale pixel intensity. This provides the amplitude and phase of a (sinusoidal)
motion having a specific well-defined period. For the laboratory experiment we will explore harmonic
analysis output at every pixel position, so that we obtain the spatial distribution of amplitude and phase.

By performing harmonic analysis over 290 subsequent intervals (‘sequences’) of approximately one
internal wave period (Tw = 4.37 s) each, we can follow the evolution of these fields, see Fig. A2 . In
this harmonic amplitude field, we see that the rectangular shape of the internal wave attractor, consisting
of four branches, becomes visible well before t/T = 80 (about 5 min). The attractor grows and gets
more distinguished from t/T =100–130 (7.3–9.4 min). After that, overall amplitudes equilibrate, and the
regions of higher amplitudes smear out somewhat over the image and also influence the region outside
the attractor region.

A.3. Phase ambiguity

In the harmonic analysis, phase is computed in three steps. The first step computes the phase per pixel,
based on the pixel intensity. Fig. A3a shows an example of this harmonic phase, taken at t/T = 160.
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Fig. A1. Two positions (a, zoomed in b), with their pixel intensity time series (c,d) and zoomed view of these time series (e,f).
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Fig. A2. Evolution of harmonic amplitude of pixel intensity (color coded, see legend). Scaled time t/T at the middle of time
series is given above each image. These times correspond to the following dimensional times: t = 347, 521, 695, 870, 1044 and
1219 s.

Fig. A3. (a) Evolution of harmonic phase of pixel intensity. Color coded phase in degrees, see legend. Same time of images as
in Fig. 4 and Fig. A2c: t/T = 160. (b) Same as in (a), but now the (double) color map is modulo 180◦ (see legend). This color
map masks the elevation/depression ambiguity for the pixel intensity.

Phase is defined relative to t/T =0. Changes in pixel intensity around every dye interface are out of phase
with those around the next interface when elevations along the attractor are in phase, because intensity
increases at one interface (e.g. dark above light) and decreases at the next interface (thus, light above
dark). Note that the pixel intensity is also out-of-phase at the opposing branch of the attractor: an in-phase
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elevation along branch 3 of the attractor is accompanied with an in-phase depression along branch 1 (and
vice versa).

In the second step, the former out-of-phase behavior between subsequent interfaces is eliminated by
applying a color map mod � instead of 2�, see Fig. A3b. Now the regular shape of the attractor can be
better appreciated, but the out-of-phase character of opposite attractor branches is lost.

In the third step, we add � to the phase around all even interfaces, leaving the odd interfaces intact.
Fig. 4b shows the result of correcting phases around even interfaces, after having defined the interface
position adaptively for each phase image (like e.g. Fig. A3a). In order to get a coherent overview, phase is
smoothed by taking the median value of 25 neighboring pixels for each pixel leading to Fig. 4b. Especially,
the out-of-phase character of the two pairs of opposite attractor branches can now be appreciated.
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